Smiths Fork Archaeological Site (23CL223), Smiths Fork Campground, Clay County, MO

William McFarlane
Johnson County Community College, mcfarlane@jccc.edu

Miranda Suri
Queens College, mirandasuri@gmail.com

Follow this and additional works at: http://scholarspace.jccc.edu/anthpp

Part of the Archaeological Anthropology Commons

Recommended Citation
http://scholarspace.jccc.edu/anthpp/3

This Article is brought to you for free and open access by the Anthropology at ScholarSpace @ JCCC. It has been accepted for inclusion in Anthropology Papers and Presentations by an authorized administrator of ScholarSpace @ JCCC. For more information, please contact bbaile14@jccc.edu.
Smiths Fork Archaeological Site
(23CL223)
Smiths Fork Campground
Clay County, MO

By Dr. Miranda Suri (CUNY-Queens College) and
Dr. William McFarlane (Johnson County Community College)

June 15 - July 3, 2014
ACKNOWLEDGMENTS

The authors would like to thank for their hard work at the Smiths Fork archaeological site:

Timothy Meade, District Archaeologist/Tribal Liaison, U.S. Army Corps of Engineers
Phillip Alig, intern with the U.S. Army Corps of Engineers
Doug Shaver, Shaver Archaeological Services, LLC

Josh Collins, Johnson County Community College (volunteer)
Tom Grant, Kansas City Archaeological Society (volunteer)
Gina Powell, Kansas State Historical Society (volunteer)
Dominique Merricks, U.S. Army Corps of Engineers (volunteer)
Kathy Older, U.S. Army Corps of Engineers (volunteer)
Nicholas Erickson, University of Kansas (volunteer)
Barb Aker (volunteer)
Louise Hicks, Kansas Anthropological Association (volunteer)
Gary Hicks, Kansas Anthropological Association (volunteer)
Dewayne Knott, Kansas Anthropological Association (volunteer)
Christine Knott, Kansas Anthropological Association (volunteer)
Austin Barker, Boy Scouts of America (volunteer)
Natalie Frische, Johnson County Community College (volunteer)
Ben Anthony, University of Kansas (volunteer)
Inga Fonder, University of Kansas (volunteer)

Thanks also to:

The Smith’s Fork Park Campground
The City of Smithville

A debt of gratitude is also owed to the many researchers who have labored previously at the Smith’s Fork archaeological site, thus paving the way for our investigations.

Special thanks to Lora Vacca, U.S. Army Corps of Engineers and Johnson County Community College.
ABSTRACT

Previous survey and excavation identified 23CL223 (the Smith’s Fork archaeological site) as a possible Steed-Kisker phase household with intact sub-plow zone deposits and multiple loci of cultural activity, including a pit feature and a hearth. Our work was designed to explore the potential this site held for shedding light on Steed-Kisker lifeways by expanding excavations beyond the previously noted pit feature. To this end, we systematically excavated six 1m x 1m units, which revealed extensive disturbance from modern farming activities that may have damaged or destroyed in situ evidence of a Steed-Kisker house. A total of 55 artifacts, consisting of modern objects, charcoal, pottery, fire cracked rock, and stone tools were recovered. A soil discoloration that may represent the remains of a posthole was noted as well.
TABLE OF CONTENTS

Acknowledgements..2

Abstract...3

List of Figures...5

List of Tables...6

Introduction...7

Site Location and Description..8

Steed-Kisker Phase...9

Previous Research...10

Field Methods...11

Results
 Excavation Units...13
 GPR Anomaly Test Units..17

Material Culture
 Pottery...21
 Stone Tools...22
 Fire Cracked Rock..25
 Other...25

Discussion..27

References Cited..29
LIST OF FIGURES

Figure 1: Location of the Smith's Fork archaeological site .. 8
Figure 2. Limits of excavation and distribution of point-plotted artifacts 13
Figure 3. General photo of root disturbance through stratum below plow zone 14
Figure 4. First soil discoloration in plan view, Unit 11 Level 3 .. 15
Figure 5. Second soil discoloration in plan view, Unit 11 Level 3 .. 16
Figure 6. Detail and profile of second soil discoloration, Unit 11 Level 3 16
Figure 7. Results of GPR Anomaly Test Excavation #1 .. 18
Figure 8. Results of GPR Anomaly Test Excavation #2 .. 19
Figure 9. Ceramic sherds, possible incised decoration noted, from Unit 11 Level 3 22
Figure 10. Examples of late-stage bifacial thinning flakes, dorsal surface 23
Figure 11. Examples of late-stage bifacial thinning flakes, ventral surface 23
Figure 12. Example of edge-modified flake, from Unit 11, Level 2 24
Figure 13. Example of edge-modified flake, from Unit 12 Level 1 24
Figure 14. Square nail from Unit 11, Level 3 ... 25
Figure 15. Round stone with ground or burnished surface, Unit 15 Level 3 26
LIST OF TABLES

Table 1: Artifact summary, 2014 excavations…………………………………………………………………20
INTRODUCTION

The Smith's Fork site (23CL223) was initially recorded in 1976 (O'Brien 1977) via a survey along the low terrace/high floodplain of the Little Platte River (see Figure 1). This survey identified a variety of artifacts, including lithics, ceramics, and faunal remains in five clusters visible on the surface. These objects were characteristic of the Late Archaic period, Kansas City Hopewell, Late Woodland period, and Steed-Kisker phase. In 2007 the area was revisited by Timothy Meade of the US Army Corps of Engineers when the City of Smithville planned to build a soccer field on the floodplain where the site is located (Ray et al. 2011). Meade conducted a series of shovel test units and encountered a distinct locus of Steed-Kisker phase cultural activity, temporarily halting plans to develop the soccer field.

Follow-up investigations were conducted by Meade and Dr. Mark Raab of the University of Missouri at Kansas City (UMKC), consisting of remote sensing (ground penetrating radar) and test excavations. This work was expanded in the summer of 2010 to include a 15m x 15m grid of shovel test units, followed by excavation of units surrounding Feature 1, which was identified as a large pit feature containing Steed-Kisker diagnostic ceramics. Radiocarbon dates yielded date ranges (2-sigma): Sample 1, cal A.D. 1170-(1260)-1280; Sample 2, cal. A.D. 1040-(1170)-1260; Sample 3, cal. A.D. 1220-(1270)-1290 (Ray et al 2011; Shaver 2011). A second locus, an area of blackened soil, was also identified.

Our work began in the summer of 2014 and was designed to test for the presence of a Steed-Kisker phase house associated with the previously identified Feature 1. After exposing the excavation limits of the work conducted in 2010, we expanded outward from Feature 1 with 1m x 1m excavation units excavated at arbitrary 10cm levels and screened using a 1/4” mesh screen. A total of six units were excavated, located to the north, south, and west of Feature 1 (see Figure 2). All units were excavated to a depth of 30cm below ground surface (consistent with the base Feature 1) and a .25m x .25m probe unit was cleared to a depth of 50cm. In most cases, soil below 25cm was sterile of cultural remains. Our work recovered 55 artifacts, including charcoal, pottery, fire cracked rock, and lithics, as well as some modern and historic objects, such as glass and nails. We also exposed a lens of soil discoloration that may represent the remains of a posthole associated with a Steed-Kisker house.
Located northeast of the town of Smithville, MO, 23CL223, the Smith’s Fork archaeological site, is situated on a flood plain between a river terrace on its south side and the Little Platte River on its north and west sides (see Figure 1). The current recorded perimeter for the site is 1353 meters. It covers roughly 105,483 square meters. During the period of Steed-Kisker occupation the site may have been half of that size. At that time the Little Platte River had cut through the western half of the current site. The Smith’s Fork Park, a camping and sports facility, is located adjacent to the eastern limits of the archaeological site. A detailed summary of the geomorphology and environmental context for the site can be found elsewhere (see Ray et al. 2011; Shaver 2011).

Figure 1: Location of the Smith’s Fork archaeological site
T53N, R33W, Sections 23 and 24,
Clay County, Missouri
USGS 7.5’ Smithville NE4, Missouri quadrangle
1961, Photo revised 1975
STEED-KISKER PHASE

Based on the artifacts recovered by previous investigations, the cultural sequence of the Smith's Fork site suggests periodic occupation of significant time depth. O'Brien identified artifacts dating to the Paleo-Indian, Late Archaic, and Kansas City Hopewell (O'Brien 1977). The cultural resources central to our investigations are primarily associated with the Steed-Kisker phase (Angelbeck et al. 2001; Chapman 1980; Shippee 1972: Wedel 1943). Although systematic research of this cultural phase is limited, the current understanding of the Steed-Kisker phase suggests a Late Prehistoric chronological designation ranging from A.D. 950 to 1400 (Logan and Ritterbush 1994) though perhaps more circumscribed to A.D. 1100 to 1300 (Roper and Adair 2011). Steed-Kisker settlement is geographically constrained along the Missouri River and tributaries from St. Joe, Missouri south to the greater Kansas City area. Sites attributed to this phase have been identified in the adjoining regions of Buchanan, Clay, Clinton and Platte counties in Missouri and Leavenworth and Wyandotte counties in Kansas (Shippee 1972).

The Steed-Kisker cultural adaptation is one of cultivation of maize, sunflower, beans, squash, and tobacco, among other plants, supplemented by part-time hunting and (Angelbeck et al. 2001). This pattern is therefore closely associated with other mixed farming phases along the middle-Missouri river, such as the nearby Nebraska Phase, Pomona Variant, and May-Brook settlements (Martin 2007). Steed-Kisker phase settlements therefore represent one of several successful adaptations along the woodland-prairie ecotone.

Wedel (1943) and others (Chapman 1952, 1980; Shippee 19872) first raised questions of affiliation and identity by arguing that Steed-Kisker phase settlements mark the western limit of Eastern Woodland and Mississippian peoples who migrated to the region. More recent critiques dismiss this argument and allow for a closer affiliation with the Central Plains traditions (Angelbeck et al. 2001; Logan and Ritterbush 1994; O'Brien and Wood 1998; Shaver 2011:11-12). Given the limited number of households that have been investigated through areal excavation these broader questions of cultural affiliation will undoubtedly be refined by future research.
PREVIOUS RESEARCH

Two prior phases of systematic archaeological investigations have been completed at the Smith’s Fork archaeological site. The first was undertaken in 1976 by Dr. Patricia O’Brien of Kansas State University who conducted a survey of the site as part of the Smithville Lake Project (O’Brien 1977). At that time she located little more than 30 artifacts in five distinct clusters. The ceramics were identified as Late Woodland and Platte Valley ware, lithics as Paleo-Indian Hell Gap point, Kansas City Hopewell, and Steed-Kisker points. Dr. O’Brien identified the site as a probable Steed-Kisker farmstead. No excavations were undertaken at that time.

More recently, from 2007-2010, the area was investigated by Timothy Meade of the US Army Corps of Engineers and Dr. Mark Raab of the University of Missouri at Kansas City (UMKC). These efforts were undertaken to assess the nature and extent of cultural resources within the site boundary in response to the City of Smithville’s plan to build a soccer field on the floodplain where the site is located. A GPR survey, soil auger testing, shovel testing and mapping, test excavations, deep coring, remote sensing mapping, and compilation of multiple data sets using GIS were conducted (Ray et al. 2011; Shaver 2011). Based on the presence of diagnostic lithics, pottery, and features, O’Brien’s initial designation of the site within the Steed-Kisker phase was confirmed (Shaver 2011). Moreover, both the spatial limits of the site and chronological designation of the associated activities were further refined, resulting in the identification of Feature 1, a large pit feature containing Steed-Kisker diagnostic ceramics and an area of blackened soil tentatively identified as a hearth. Radiocarbon dates yielded date ranges (2-sigma): Sample 1, cal A.D. 1170-(1260)-1280; Sample 2, cal. A.D. 1040-(1170)-1260; Sample 3, cal. A.D. 1220-(1270)-1290 (Ray et al 2011; Shaver 2011).

Our research strategy was designed to build upon these earlier efforts, both in an attempt to mitigate the encroachment of recreational activities and more precisely identify the limits of the site and understanding of Steed-Kisker phase material culture.
FIELD METHODS

Work was carried out at the Smiths Fork archaeological site from Monday, June 16 - Friday, June 27. This was followed by lab work to wash, process, and analyze recovered materials, conducted at Johnson County Community College from Monday, June 30 - Wednesday, July 2.

Our research strategy was designed to address three objectives. First, to mitigate the encroachment of recreational activities by exploring the cultural significance of the Smith’s Fork archaeological site, which is under threat from the expansion of recreational facilities. Second, to further delineate the site beyond Feature 1 and determine whether a Steed-Kisker phase house was present and/or preserved. Finally, to expand knowledge of Steed-Kisker phase practices in this area. Many Steed-Kisker phase sites were destroyed following the construction of the Smithville Dam. O’Brien (1977) reported 30 non-mound Steed-Kisker sites within the Smithville Reservoir alone. The Smith’s Fork site, therefore, presented an opportunity to recover archaeological resources from one of the few remaining sites within the Little Platte River drainage.

Our investigations were targeted on a small area in the easternmost region of the site already identified as a possible locus of Steed-Kisker domestic activity. Notably, excavations conducted during 2010 (Shaver 2011) exposed a storage pit and associated hearth, yet the limits of the house were never determined. Our excavation strategy was aimed at defining the limits of the house and collecting of a larger sample of cultural materials. To date, few Steed-Kisker households have been investigated through areal excavation (Angelbeck et al. 2001; Chapman 1980; Logan and Hill 2000; Shippee 1972) and we hoped to add to this database.

After locating the site datum and previous zone of test excavations conducted in 2010, we removed the backfilled soil and tarp covering Feature 1 and oriented a 1m x 1m excavation grid to these previous investigations. The limits of our expanded excavations were recorded via total station (see Figure 2). Expanding outward to the north, west, and south of Feature 1, we excavated a total of six 1m x 1m units. Our initial excavation unit, Unit 9, was excavated following arbitrary 10cm levels using trowels. However, as we began to identify the natural and cultural stratigraphy present at the site, we adjusted our
excavation methodology. The top level of soil, approximately 0-15cm below modern ground surface was identified as a culturally disturbed plow zone from modern farming activity. Accordingly, we cleared this upper level of our excavation units using a shovel skimming technique, then proceeding down in 5cm levels with trowels. All excavated soil, whether from shovel skimmed or troweled units was screened through a 1/4" mesh screen. The practice of shovel-skimming through the plow zone was utilized by excavators during the 2010 investigations (Tim Meade, personal communication 2014).

Recovered artifacts were collected and sorted into bags labeled with the site designation, unit number, level number and depth, a description, the date, and the excavator names. To maintain consistency with previous excavations at the site (Shaver 2011), any artifact measuring more than 2.5cm was point plotted using a total station and bagged and labeled separately. Documentation of general field notes was conducted via narrative note-taking on an iPad utilizing Evernote software and photographs were taken with the iPad as well. Due to the limited nature of the excavations and resulting finds, no special forms were utilized.

In addition to excavation of the six units surrounding Feature 1, two shovel test units were also opened by Timothy Meade and Phillip Alig of the Army Corps of Engineers. These test units were designed to probe anomalies identified via the GPR survey (Shaver 2011). These units were roughly .5m x .5m and were excavated to a depth of approximately 1m below modern ground surface using a shovel. All excavated soil was screened.
EXCAVATION RESULTS

In this section we present the results of our excavations at the Smith’s Fork site during June of 2014. Albeit limited, these data consist of the soil profile, artifact classification and distributions, and potential features associated with the storage pit and hearth features identified in the 2010 investigations. Additionally, two GPR anomalies identified by Doug Shaver (2011) were investigated through limited excavation.

Excavation Units

A total of six 1m x 1m excavation units were placed in association with the hearth and storage pit feature. Following the protocol established by earlier investigations, each excavation unit was given a numerical designation and the southwest corner of each unit aligns with the site grid.

Figure 2. Limits of excavation and distribution of point-plotted artifacts.
During the 2014 investigations Units 9, 11-15 were opened (see Figure 2). Unsurprisingly given their close proximity, the soil profile of each unit exhibits uniformity reflecting their shared site-transformations. Paramount among the impacts upon these remains is the 15-20 cm thick plow zone overlaying the remains of the house. This disturbed stratum is a very dark grayish brown (10 YR 3/2) dense clayey soil with inclusions of organic material and few stones or artifacts. The bottom of this stratum varies from 15 to 20 cm below ground surface. The majority of the few artifacts we recovered were distributed at the base of this layer (ca. 20 cm below ground surface).

The sub-surface horizon lay beneath the plow zone and continued below the depth of our excavations. A probe in the northwest corner of Unit 9 was excavated to a depth of 50 cm bgs and revealed no change in soil. The stratum consists of a very dark grayish brown (10 YR 3/2) sandy but compacted soil with fine inclusions of charcoal and mottled with lighter gray clay. Evidence for decayed roots were noted at a depth of 18 to 25 cm below ground surface (Figure 3) and were especially pronounced in Units 9 and 12. Traces of the roots were noted in Unit 13.

Figure 3. General photo of root disturbance through stratum below plow zone.
Also noted in the subsurface horizon were two discrete discolorations in the soil. The first was roughly 6 cm round when first excavated and had a distinctive red ring surrounding a darkened soil consistent with charcoal or burning (Figure 4). When bisected it became clear that the discoloration was quite shallow, a lens no more than 2 cm thick.

The second discoloration consisted of a dark black semicircle with non-continuous reddish patches (Figures 5 and 6). With available evidence these discolorations may represent the base of small postholes, however their shallow deposition and limited profile detract from our confidence with this designation.
Figure 5. Second soil discoloration in plan view, Unit 11 Level 3.

Figure 6. Detail and profile of second soil discoloration, Unit 11 Level 3.
Taken together, these limited results lead to several possible interpretations related to the presence and organization of a Steed-Kisker house at this location. The first is that aside from the hearth and storage pit the remains of a house at this locus are too ephemeral for archaeological detection. In particular, the remains of postholes may be too faint to allow for the determination of the limits of the house. A second possibility is that our excavations were constrained to the center of the house and the outer walls were not exposed through our excavations. Although the sample size is quite small, Steed-Kisker houses that have been documented have a footprint of roughly 7 by 7 meters (Angelbeck et al. 2001; Chapman 1980; Shippee 1972). If we assume that the hearth is near the center of the house then our excavations to the west and south should have exposed the limits of the structure. That is, if this house conforms to similar structures assigned to the Steed-Kisker phase.

A final interpretation, which we feel is most likely, is that the house was shallowly buried and that the uppermost traces were removed through repeated plowing. The best evidence for a house at this locus comes from the storage pit and associated hearth. Both of these features would occupy the lowest levels of cultural strata and would be the best preserved under the current conditions. Architectural features such as postholes, especially the upper limits of these features, we argue were destroyed by modern agricultural activity. Unfortunately, this situation precludes our ability to say much about the internal organization of domestic spaces and associated activities. At the very least we can confirm the presence of at least one Steed-Kisker house (and likely more) at the Smith's Fork site.

GPR Anomaly Test Units

Two .5m x .5m test units were excavated to investigate anomalies detected during a GPR survey by Doug Shaver (2011). The first, designated as GPR Anomaly Test #1 (GPRAT #1), was excavated by Tim Meade, and it was located in the northeastern region of the site. Meade identified a relatively simple soil profile and recovered a small concentration of fire-cracked rock, but was unable to identify any features at the depth indicated by GPR (see Figure 7).
The second GPR anomaly test excavation was conducted by Phil Alig (see Figure 8). This excavation was located roughly 8 meters north of Feature 1. Alig documented the soil profile and recovered a single bifacial thinning flake from the plow zone. A larger stone recovered from 20 cm below ground surface was later discarded as non-cultural. No other features were noted. The excavation was conducted on the final two days of the season and Alig was unable to reach a meter below ground surface. However, given the lack of cultural evidence we decided that a depth of 80 cm below ground surface was a sufficient test of the GPR anomaly.
Figure 8. Results of GPR Anomaly Test Excavation #2.
MATERIAL CULTURE

A total of 55 cultural objects were recovered from our excavations (see Table 1). The vast majority of these objects were located within the plow zone (0-20cm below modern ground surface) and were therefore no longer in situ. The recovered objects fell into four broad classes: pottery, lithics/stones tools, fire cracked rock (FCR), and other, including charcoal and historic/modern objects. Each will be described in turn.

Table 1: Artifact summary, 2014 excavations

<table>
<thead>
<tr>
<th>Unit</th>
<th>Level</th>
<th>Depth (cm bgs)</th>
<th>Object</th>
<th>Count</th>
<th>Weight (g)</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>0-10</td>
<td>Nail - historic?</td>
<td>1</td>
<td>0.3</td>
<td>12.7</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0-10</td>
<td>Glass - modern?</td>
<td>1</td>
<td>3.7</td>
<td>29.8</td>
<td>5.2</td>
<td>11.2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0-10</td>
<td>Pottery sherd</td>
<td>1</td>
<td>0.4</td>
<td>13.0</td>
<td>11.3</td>
<td>3.3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0-10</td>
<td>Flake, debitage</td>
<td>1</td>
<td>4.1</td>
<td>22.9</td>
<td>29.5</td>
<td>8.2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>15-20</td>
<td>Pottery sherd</td>
<td>1</td>
<td>1.4</td>
<td>20.4</td>
<td>15.4</td>
<td>4.6</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>15-20</td>
<td>FCR</td>
<td>1</td>
<td>1.6</td>
<td>18.9</td>
<td>11.8</td>
<td>10.5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>15-20</td>
<td>Flake, debitage</td>
<td>1</td>
<td>0.1</td>
<td>9.0</td>
<td>7.3</td>
<td>2.1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>20-25</td>
<td>Charcoal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0-10</td>
<td>Flake, debitage</td>
<td>1</td>
<td>36.7</td>
<td>54.1</td>
<td>50.3</td>
<td>15.6</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>10-15</td>
<td>FCR</td>
<td>1</td>
<td>3.4</td>
<td>27.7</td>
<td>13.3</td>
<td>12.4</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>10-15</td>
<td>Flake, debitage</td>
<td>1</td>
<td>0.7</td>
<td>17.2</td>
<td>11.7</td>
<td>3.5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>10-15</td>
<td>Flake, Bifacial Thinning</td>
<td>1</td>
<td>0.5</td>
<td>17.6</td>
<td>13.2</td>
<td>2.4</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>10-15</td>
<td>Flake, EMF</td>
<td>1</td>
<td>36.6</td>
<td>47.0</td>
<td>52.3</td>
<td>13.6</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>15-20</td>
<td>Nail - historic?</td>
<td>1</td>
<td>2.5</td>
<td>40.8</td>
<td>5.5</td>
<td>5.9</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>15-20</td>
<td>FCR</td>
<td>1</td>
<td>15.1</td>
<td>34.8</td>
<td>21.7</td>
<td>24.2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>15-20</td>
<td>Pottery sherd - incised</td>
<td>1</td>
<td>2.3</td>
<td>25.6</td>
<td>21.3</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>15-20</td>
<td>Pottery sherd</td>
<td>1</td>
<td>1.4</td>
<td>21.6</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0-15</td>
<td>FCR</td>
<td>1</td>
<td>4.2</td>
<td>21.3</td>
<td>17.6</td>
<td>9.1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0-15</td>
<td>Flake, Bifacial Thinning</td>
<td>1</td>
<td>0.1</td>
<td>8.6</td>
<td>15.4</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0-15</td>
<td>Flake, EMF</td>
<td>1</td>
<td>11.1</td>
<td>22.6</td>
<td>28.7</td>
<td>15.2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0-15</td>
<td>FCR</td>
<td>1</td>
<td>7.7</td>
<td>31.0</td>
<td>20.1</td>
<td>15.4</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0-15</td>
<td>FCR</td>
<td>1</td>
<td>8.2</td>
<td>25.6</td>
<td>29.4</td>
<td>15.7</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>15-20</td>
<td>FCR</td>
<td>1</td>
<td>5.2</td>
<td>31.1</td>
<td>19.8</td>
<td>8.4</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>20-25</td>
<td>Pottery sherd</td>
<td>1</td>
<td>4.6</td>
<td>27.7</td>
<td>21.6</td>
<td>5.2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0-15</td>
<td>Pottery sherd - incised</td>
<td>1</td>
<td>0.3</td>
<td>12.6</td>
<td>8.5</td>
<td>4.2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0-15</td>
<td>FCR</td>
<td>2</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0-15</td>
<td>Flake, debitage</td>
<td>2</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pottery

A total of 11 pottery fragments were recovered from our excavations associated with Feature 1 (Figure 9). Only two fragments were recovered from deposits securely located beneath the plow zone (20cm below modern ground surface), while the remainder came from within that zone of disturbed soil. None were much larger than 2.5cm in size and most were badly eroded. Surface treatment was evident on 3 pieces, all of which bore incised lines. On the remaining 8 sherds, the surface was too eroded to determine treatment. The pottery all seems to be of the same clay type and shell tempered.
Stone Tools

A total of 17 lithics were recovered from our excavations. These fall into three broad categories: general debitage, bifacial thinning flakes, and edge-modified flakes. Of these, only two pieces of debitage appeared below the plow zone, the rest were recovered from shallower, disturbed deposits.

Based on their size and form, the bifacial thinning flakes (see Figures 10 and 11) were from a relatively late-stage of the reduction process. No formal bifacial tools or tool fragments were recovered.
A total of three edge-modified flakes were noted in the assemblage. These were classified based on the presence of retouch or wear along at least one margin of the flake. In each case the modification was slight enough that it could not be determined if the alteration was through repeated use or through intentional alteration of the cutting edge. These expedient tools nevertheless represent the most formal lithics recovered from our excavations. Representative examples are included in Figures 12 and 13, below.
Figure 12. Example of edge-modified flake, from Unit 11, Level 2.

Figure 13. Example of edge-modified flake, from Unit 12 Level 1.
Fire Cracked Rock

A total of 14 fragments of FCR were recovered from our excavations, totaling 84.8 grams. A single piece was recovered from deposits securely below the plow zone (from Unit 15, just south of Feature 1). The remaining pieces were excavated from within the plow zone and are likely disturbed or displaced.

Other

And handful of other objects were also recovered from our excavations, including modern glass, two fragments of (possibly historic) square nails (Figure 14), charcoal, and a small, round rock with a flattened surface that may be the result of grinding or burnishing (Figure 15). Two of the three charcoal fragments were recovered from below the plow zone, as was the circular stone. The glass and nails were all excavated from the plow zone, lending further credence to the idea that this zone (0-20cm below ground surface) has been disturbed and contaminated by modern activities.

Figure 14. Square nail from Unit 11, Level 3.
Figure 15. Round stone with ground or burnished surface, Unit 15 Level 3.
DISCUSSION

In terms of meeting our project goals, the work we conducted at the Smith’s Fork archaeological site can be considered successful in several ways. First, we established that a concentration of cultural materials likely associated with the Steed-Kisker phase are present in an area extending at least 2-3m to the north, south, and west of the previously identified Feature 1. These cultural remains include objects used in a range of daily activities and suggest Feature 1 was not just an isolated find but part of a larger cultural landscape that included behaviors associated with domestic life. Further, our excavations suggest that this concentration of cultural materials is not continuous across the floodplain at the Smith’s Fork archaeological site, but concentrated around Feature 1. This is attested by the paucity of remains discovered -- either in the plow zone or below it -- in either of the GRP Anomaly test units. However, it should be noted that other concentrations of cultural material were identified across the floodplain via extensive shovel testing done 2007-2010. This may indicate several loci of Steed-Kisker cultural activity and/or destruction and redistribution of remains via plowing. Further excavation would be required to verify the extent and nature of such loci.

Second, our findings confirm that damage has been done to archaeological remains by modern farming activities, such as plowing. It was clear from the natural and cultural stratigraphy that the modern plow zone extended at least 15cm below the ground surface, and likely as deep as 20cm. In all excavated units, these levels contained the highest concentration of artifacts, suggesting in situ remains were destroyed and redistributed via plowing. Further, the soil discolorations identified in Unit 11 (at a depth of 21cm below ground surface) may be all that remain of a posthole associated with a Steed-Kisker phase house, the remainder of which was destroyed. If such a house was once present at the Smith’s Fork archaeological site, it is our opinion that it may have been situated shallowly and did not survive the damage done by modern farming activities. In this case, only more deeply situated remains (such as the previously excavated pit feature) may be well preserved.

In addition to contributing to the documentation and mitigation of activities damaging to the Smith’s Fork archaeological site and Steed-Kisker sites generally, and
identification of a locus of cultural activity surrounding Feature 1, we also hoped to add to the broader understanding of the Steed-Kisker phase cultural pattern. Due to the small number of artifacts recovered, this was the least successful aspect of our project. The pottery recovered, though in poor condition, appear consistent in clay, temper, and surface treatment with known Steed-Kisker phase ceramics but were too fragmentary to assert anything further about their production, distribution, or use. The presence of FCR, distributed widely across the excavated area, may suggest a house (if one existed here) was burned upon its abandonment, or it may indicate a concentration of rock around a hearth that has since been destroyed by plowing. Of the recovered lithic remains this collection is consistent with lithics associated with Steed-Kisker peoples reported elsewhere. It is noteworthy only in the absence of formal tools and diagnostic projectile points.
REFERENCES CITED

Angelbeck, William O., Terrell L. Martin, Jeffrey J. Berna, and Neal H. Lopinot

Chapman, Carl H.

Logan, Brad

Logan, Brad, and Matthew E. Hill, Jr.

Logan, Brad and Lauren Ritterbush

Martin, Terrell L.

O’Brien, Michael J. and W. Raymond Wood

O’Brien, Patricia J.

Ray, Jack H., Marcie L. Venter, Gina S. Powell, Neal H. Lopinot, David I. Cain, and Dustin A. Thompson

Roper, Donna and Mary Adair

Shaver, Douglas E.

2011 *A GIS Compilation of Field Data from the Smith’s Fork Archaeological Site (23CL223), Clay County, Missouri.* M.S. Thesis, University of Missouri-Kansas City, Department of Anthropology.

Shippee, J. Mett

Wedel, Waldo R.